Refine Your Search

Search Results

Technical Paper

Influence of Calcium-Based Additives with Different Properties on Abnormal Combustion in an SI Engine

2016-11-08
2016-32-0007
Technologies for further improving vehicle fuel economy have attracted widespread attention in recent years. However, one problem with some approaches is the occurrence of abnormal combustion such as low-speed pre-ignition (LSPI) that occurs under low-speed, high-load operating conditions. One proposed cause of LSPI is that oil droplets diluted by the fuel enter the combustion chamber and become a source of ignition. Another proposed cause is that deposits peel off and become a source of ignition. A four-stroke air-cooled single-cylinder engine was used in this study to investigate the influence of Ca-based additives having different properties on abnormal combustion by means of in-cylinder visualization and absorption spectroscopic measurements. The results obtained for neutral and basic Ca-based additives revealed that the former had an effect on advancing the time of autoignition.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influences of Compression Ratio and Methane Additive on Combustion Characteristics in a DME-HCCI Engine

2005-10-24
2005-01-3745
In this study, a spectroscopic method was used to measure the combustion characteristics of a test diesel engine when operated on dimethyl ether (DME) under a homogenous charge compression ignition (HCCI) combustion process. A numerical analysis was made of the elementary reactions using Chemkin 4.0 to perform the calculations. The results of the analysis showed that compression ratio changes and the methane additive influenced the autoignition timing in the DME-HCCI combustion process. In the experiments, reducing the compression ratio delayed the time of the peak cylinder pressure until after top dead center, thereby increasing the crankshaft output and thermal efficiency. The addition of methane enabled the DME-HCCI engine to provide crankshaft output equivalent to that seen for diesel engine operation at a low equivalence ratio. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Technical Paper

Study on Combustion and Exhaust Gas Emission Characteristics of Lean Gasoline-Air Mixture Ignited by Diesel Fuel Direct Injection

1998-10-19
982482
The uniform lean gasoline-air mixture was provided to diesel engine and was ignited by direct diesel fuel injection. The mixing region that is formed by diesel fuel penetration and entrainment of ambient mixture is regarded as combustible turbulent jet. The ignition occurs in this region and the ambient lean mixture is burned by flame propagation. The lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An increase of diesel fuel injection is effective to ensure combustion and ignition. As diesel fuel injection increases, HC concentration decreases, and NOx and CO concentration increases.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
X